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ABSTRACT
Live video accounts for a signi�cant volume of today’s Internet
video. Despite a large number of e�orts to enhance user quality
of experience (QoE) both at the ingest and distribution side of live
video, the fundamental limitations are that streamer’s upstream
bandwidth and computational capacity limit the quality of experi-
ence of thousands of viewers.

To overcome this limitation, we design LiveNAS, a new live
video ingest framework that enhances the origin stream’s qual-
ity by leveraging computation at ingest servers. Our ingest server
applies neural super-resolution on the original stream, while impos-
ing minimal overhead on ingest clients. LiveNAS employs online
learning to maximize the quality gain and dynamically adjusts the
resource use to the real-time quality improvement. LiveNAS deliv-
ers high-quality live streams up to 4K resolution, outperforming
WebRTC by 1.96 dB on average in Peak-Signal-to-Noise-Ratio on
real video streams and network traces, which leads to 12%-69% QoE
improvement for live stream viewers.
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• Information systems → Multimedia streaming; • Networks
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1 INTRODUCTION
Live video tra�c has experienced a rapid growth [10] with the
rise of live streaming services, such as YouTube Live [31] and
Twitch.tv [17]. Today, live video accounts for a signi�cant volume
∗The �rst two authors contributed equally to the paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7955-7/20/08. . . $15.00
https://doi.org/10.1145/3387514.3405856

of Internet video tra�c. With its steady growth, market reports
predict that live video will take up 17 percent of Internet video
tra�c by 2022 [5]. With streamers on mobile on the fast rise (more
than doubling in 2019 [14]), supporting high-quality (e.g., full HD to
4K) streaming on diverse devices has also become evermore critical.

Live streaming systems consist of two main components. First,
the ingest side concerns the delivery of live video from the origi-
nal streamer to a media server. It uses low-latency streaming pro-
tocols [12, 13] to enable timely delivery to dedicated streaming
servers [74]. Second, at the distribution side, content distribution
servers use adaptive bitrate streaming [2, 6] to optimize the quality
experience and scale across thousands to millions of concurrent
viewers per live stream [19, 40, 51].

However, the key limitations in an end-to-end live video delivery
are that the stream quality is fundamentally constrained by the
streamer’s uplink bandwidth and its computational capacity. For
example, if the network bandwidth between the streamer and the
media server is scarce, the ingest stream quality su�ers [15, 30, 74],
which restricts the quality of the entire delivery downstream. In
addition, supporting high-quality, 4K live requires the client to
perform real-time 4K encoding, which is infeasible without a high-
end CPU [7]/GPU [37] or hardware support and may be too power-
hungry for mobile devices [67]. These factors potentially deprive
thousands of viewers of their opportunity to enjoy high-quality
live stream even if they have ample bandwidth [41, 59].

Recent advances in neural-enhanced video delivery [71, 72]
present a unique opportunity to enhance the video quality by ap-
plying neural computation on video frames. In particular, NAS [72]
integrates neural super-resolution into adaptive streaming using
a per-video deep neural network (DNN) and achieves dramatic
quality improvement. We expect live streaming can greatly bene-
�t if similar bene�ts can be translated into its context. However,
existing work [39, 72] mainly targets on-demand video delivery
and requires pre-training a DNN model for each video. Thus, the
approach cannot be easily adopted to live video with stringent delay
requirement.

In this paper, we demonstrate neural-enhancement on live video
is feasible and e�ective when combined with online training. To
this end, we propose LiveNAS, a new live ingest framework that
employs online training and utilizes freshly trained results for super-
resolution in the context of live video. The resulting system is one
that e�ectively breaks the strong dependency between the quality
of live video and the ingest client’s bandwidth, o�ering high-quality
live streams to viewers even when the ingest network is congested.
In addition, leveraging the computational power at ingest servers,
LiveNAS enables bandwidth- and energy-e�cient 4K live ingest
for resource-constrained mobile devices.

LiveNAS consists of two ingest components. First, at the media
server, online training and inference operate in parallel. It learns
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new features of a video stream online to update the mapping from
low-quality to a high-quality version, while simultaneously enhanc-
ing the ingest stream using super-resolution DNNs. Second, the
ingest client transmits small patches of high-quality raw frames
captured by its camera along with the encoded video. These high-
quality patches are used as ground truth labels for training the
super-resolution DNN at the media server.

Applying online training and real-time super-resolution to live
video ingest, however, involves solving a number of new and non-
trivial challenges:

� First, the high-quality patches that a client transmits share the
ingest-side bandwidth with live video. Allocating large band-
width for training patches can improve super-resolution. How-
ever, it leaves less bandwidth for live video, which can cause
signi�cant quality degradation.
� Second, to bene�t a large number of streams, e�cient resource

use is required. Our observation is that for videos with minimal
scene change the online training gain eventually saturates to the
point where further training may not provide bene�t. However,
video segments with frequent scene change bene�t from contin-
uous training. Thus, real-time adaptation to content can improve
resource-e�ciency.
� Finally, minimizing the degradation in quality of experience (QoE)

due to the latency introduced by super-resolution is important.
In addition, in contrast to o�ine training where maximizing the
�nal accuracy is more important than the training time, we want
the training gain to appear as fast as possible.

LiveNAS addresses the challenges by introducing new compo-
nents at the ingest client and the server. First, our ingest client in-
corporates a quality-optimizing scheduler that e�ectively balances
the allocation of uplink bandwidth between training patches and
real-time video. Second, at the ingest server, our content-adaptive
trainer adapts the amount of training to the scene changes in live
video to maximize the resource e�ciency. Finally, to bene�t from
the training as fast as possible, LiveNAS client selects patches that
will lead to higher quality gains from the most recent video frames.
The ingest server, then, utilizes GPUs in a way that produces train-
ing gain as fast as possible, reduces inference latency, and enables
real-time super-resolution up to 4K. This work does not raise any
ethical issues.

We evaluate LiveNAS using a full system implementation on top
of a commercial state-of-the-art live ingest system, WebRTC [26].
We use nine categories of recorded live streams from Twitch and
YouTube and measure user QoE against hours of real-network
traces. Our evaluation, consisting over 300+ hours of streaming,
shows that LiveNAS improves video quality by 1.96 dB over We-
bRTC and by 1.19 dB over generic super-resolution in Peak-Signal-
to-Noise-Ratio (PSNR). This improves the QoE of end viewers
watching live streams via HTTP adaptive streaming by 12% to
69%.

In summary, we make four key contributions:

� Video quality improvement for end-users: By improving in-
gest quality, LiveNAS brings signi�cant QoE improvements to
end viewers of live streams.

End Viewers

CDN Servers

Live Streamers/Broadcasters

240p
360p
480p
720p

1080pTranscode

Ingest Side Distribution Side

1080p720p 360p

Ingest Server

Congestion Congestion

Figure 1: Live Streaming End-to-End Work�ow
� 4K live in constrained environments: LiveNAS enables 4K

streaming without requiring real-time 4K encoding or imposing
a high-bandwidth requirement on ingest clients.
� Quality optimization with online training: LiveNAS clients

maximize the net video quality by balancing the bandwidth allo-
cation between high-quality training labels and real-time video
in an online learning context.
� Resource optimization for online training: We propose a

new online training method that adapts to the content of live
video by detecting training gain saturation and scene transitions.

2 BACKGROUND
Live video delivery. Figure 1 shows the end-to-end work�ow of
live streaming divided into ingest and distribution. The ingest side
is responsible for sourcing the origin stream from ingest clients.
A live video captured at the ingest client is streamed to a media
server via streaming protocol, such as RTSP/RTMP [11, 12]. The
media server, often located in a relatively well-provisioned facility,
such as the cloud, transcodes the stream into 2-10 second chunks
with multiple quality levels for HTTP adaptive streaming [66] and
publishes the new chunk to content delivery networks (CDNs). This
paper focuses on the �rst hop delivery between origin streamer
and media server, namely the ingest.
Super-resolution up-samples low resolution image/video to pro-
duce higher resolutions. It is often used in contexts where a high-
quality version is not available. Recent studies �nd deep neural
networks [42, 52, 55, 64, 75] are e�ective in learning the mapping
from a low resolution to higher resolution. Many algorithmic ad-
vances [54, 65, 76] have been made to make inference and training
more e�ective.
Content-aware neural adaptive streaming. NAS [72] applies
super-resolution on top of adaptive streaming. It generates a super-
resolution DNN for each video o�ine. When a client requests a
video from CDN server, the server provides a deep neural network
(DNN) corresponding to the video. The client then applies the DNN
to the received low-quality video chunks by utilizing its own com-
puting power. NAS signi�cantly improves user QoE by utilizing
super-resolution and client computation. However, live video can-
not bene�t from NAS because it requires a pre-trained DNN model
for each video and ten minutes of DNN training is required on GPU
per minute of video [72].
WebRTC [38] ingest framework. WebRTC is a de facto standard
for live video ingest designed to deliver live video with highest
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Figure 2: Motivation of LiveNAS
quality and minimal latency. Its client (streamer-side) consists of
a transport layer that uses google congestion controller (GCC) on
top of Real-Time Protocol (RTP) and a video engine that uses the
VP8/VP9 video codec. The RTP implementations are built on both
TCP and UDP, where UDP is preferred over TCP due to latencies
in�ated by TCP packet retransmission. At runtime, GCC estimates
the available network throughput, similar to adaptive streaming,
and outputs the target bitrate. Then the video engine encodes video
with the given target bitrate to match the available network band-
width.

3 MOTIVATION AND APPROACH
Case for super-resolution at ingest. The quality of a live video
stream is sensitive to the variation in available network bandwidth.
A live ingest client cannot use bandwidth aggressively because 1) it
must avoid packet loss to minimize latency due to retransmission;
and 2) the ingest server cannot use much bu�er to absorb the band-
width variations. Figure 2a shows the available bandwidth and video
bitrate for live video using WebRTC compared with on-demand
video using adaptive streaming [57] given a FCC broadband net-
work trace [8]. The result is obtained by using the Mahimahi [58]
network emulation tool. WebRTC uses bandwidth much more con-
servatively than adaptive streaming [47, 57] whose large bu�er
e�ectively absorbs bandwidth variations. As a result, WebRTC re-
quires much larger bandwidth than adaptive streaming clients for
the same quality.

In contrast, super-resolution can signi�cantly improve video
quality without requiring more bandwidth. NAS [72] shows one
can improve video quality by 1-5 dB, giving bene�t comparable to
using 17% more bandwidth. The conservative bandwidth use of
live streaming makes super-resolution even more attractive in its
context. To exemplify this, Figure 2b compares the video quality
with and without super-resolution in average Peak-Signal-to-Noise-
Ratio (PSNR) while scaling the bandwidth of the earlier trace by
a factor between 1 and 2 using a video [35] from YouTube. We
observe that super-resolution can provide bene�t comparable to
having 1.5x to 2x the bandwidth! Further analyzing the cause, we
�nd that WebRTC on average uses only 55-64% bandwidth for live
video out of what the network actually allows due to its conservative
behavior.

Ingest-side super-resolution looks even more attractive consid-
ering its deployment model. Super-resolution can be applied at
the media ingest server, which is typically in a cloud environment
where computation can be more easily provisioned. In addition, in-
gest servers are less resource-constrained than client devices which

can be mobile. This enables LiveNAS to support energy-e�cient
4K live streaming, even with a client that cannot support real-time
4K encoding, as we demonstrate in §8.
Case for online learning. In DNN-based super-resolution, it is
known that using a neural network trained on the same content,
namely a content-aware DNN, provides greater bene�t [71, 72].
However, the pre-trained approach does not suit live streaming.
Streamers provide a variety of content even within a single live
streaming session [40]. Thus, training super-resolution DNNs with
videos from previous streaming sessions is less e�ective and shows
signi�cant variations in quality, making the approach unreliable.

Online learning provides two key bene�ts. First, it provides larger
and reliable quality gains than pre-training. To demonstrate the
e�ectiveness of online learning with fresh live data, we emulate
pre-trained and online learning approaches using popular ”Just
Chatting” videos from Twitch. For pre-training, we use recorded
live streams from the same steamer [22] between January 13 to 16,
2020. For each live stream, we use its previous stream as training
data. For the online approach, we use the same stream for online
training and testing. We keep the GPU training time identical for
both. Figure 2c shows the resulting video quality in PSNR. The result
suggests that online learning with fresh data shows higher quality
gain over using a pre-trained model from history. The quality gain
of the pre-trained model is only 0.7 dB higher than the naive bilinear
up-sampling that does not use DNN, whereas an online learning
model delivers at least 2.3 dB gain in PSNR.

Second, online learning allows us to adapt the amount of training
to the real-time quality gain that super-resolution delivers, which
depends on the actual content of the video. For example, if the
super-resolution gain has decreased, it might mean that online
training is not keeping up with recent scene changes, in which
case one can leverage more computation for online training by
using multiple GPUs. On the other hand, the quality gain may
saturate over time and further training may not pay o� in quality,
in which case temporarily suspending online training makes sense.
This presents a unique opportunity to online learning in delivering
reliable quality with e�cient resource use.
LiveNAS challenges. Based on the idea that online learning can
e�ectively enhance the quality of live streams at ingest, this paper
explores the design of maximizing its bene�t while being cost-
e�ective. However, despite the promises, applying online learning
for super-resolution of live video involves solving a series of non-
trivial challenges.

First, online learning requires both high-resolution videos (used
as ground truth labels for super-resolution training) and powerful
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Figure 3: LiveNAS System Overview

computing devices such as server-class GPUs and NPUs [46]. The
original streamer can capture raw uncompressed video at high-
resolution (e.g., 1080p or 4K), but relying on that one has enough
computing power for online training falls short of a practical design.
Thus, LiveNAS chooses to provision for and utilize computation at
media servers.

Second, utilizing server computation results in a challenge that
media servers do not have high-resolution labels required for online
training but transmitting high-resolution labels from the original
streamer requires too much bandwidth and often infeasible. To
address the challenge, we rely on our key observation that even
a fraction of ground truth labels can provide substantial training
gains, which is demonstrated in Figure 2d. For example, when we
sample 1.7% frames (0.5 fps) within a 1080p video and crop 5% of
them, the size of resulting frames, referred to as patches, is only
124 kbps. Even training a DNN with these (small) patches, it delivers
signi�cant quality improvement (+4 dB PSNR), which is comparable
to that of using all frames (-0.27 dB PSNR). This is because video
contains a large amount of redundancy that can be eliminated for
training a DNN.

Leveraging this, the paper establishes the feasibility of online
learning for super-resolution using a fraction of live video frames
(patches) as ground-truth labels.

Finally, transmitting the ground-truth labels consumes available
bandwidth and leaves less bandwidth for the live video itself. Thus,
we must strike a balance between the two to maximize the net video
quality. Next, we describe how LiveNAS solves the challenges and
address the relevant issues in making LiveNAS more e�ective.

4 SYSTEM OVERVIEW
The goal of LiveNAS is to enhance the video quality of the origin
stream at the ingest server using deep neural network-based super-
resolution, while not a�ecting or minimizing the impact on other
QoE metrics for live streaming, such as delay and frame loss [43, 44,
61]. It must be agnostic to video codec, transport and rate control
algorithm used for ingest. Finally, we assume the ingest media
server is provisioned with GPUs that can be used for online training
and inference.
System overview. Figure 3 shows an overview of LiveNAS that
consists of an ingest client and an ingest server. A notable feature of
LiveNAS ingest client is that it sends patches of high-quality frames
for online training along with video. Two design components work
coherently at the client to maximize the video quality: the quality-
optimizing scheduler that allocates bandwidth between the training
patches and live video stream (§5.1); and the patch sampler (§5.2)
that selects high-quality labels to be transmitted.

LiveNAS media server performs online learning and transforms
the original video steam into a higher quality using super-resolution
DNNs. Two novel components operate here: the content-adaptive
online learning engine that dynamically adapts the GPU usage for
training for resource e�ciency (§6.1); and the super-resolution pro-
cessor (§6.2) that enables 4K super-resolution with multiple GPUs.

5 LIVENAS INGEST CLIENT DESIGN
We �rst detail the two new components at our ingest client.

5.1 Quality-Optimizing Scheduler
Problem and goal. LiveNAS uses an estimate of available band-
width from the underlying transport layer. Given the available
bandwidth �C at time C , the LiveNAS scheduler splits its use be-
tween the high-quality labels, ?C , and the live video, EC . The goal
of this module is to �nd the bandwidth allocation between high-
quality labels and live video, that maximizes the overall quality.
This involves balancing the trade-o� between the video quality
and future expected quality gain from online learning. If we use
more bandwidth to encode the video, less bandwidth is available for
transmitting high-quality labels that drive online learning. Thus,
we express our optimization goal as the sum of video quality and
the future discounted expected quality gain due to online training:

max
EC �?C

&E834> „EC ” ‚ W �&�## „
CÕ
:=0

?: ”

B �C�8C� EC ‚ ?C � �C

(1)

where W � 1 is a discount factor. The �rst term, &E834> „EC ”, in
our optimization objective is the video stream quality given the
encoding rate, EC , and the second term, &�## „

˝C
:=0 ?: ”, re�ects

the future gain due to online training which is a function of the
total training patches given so far,

˝C
:=0 ?: .

Approach. We observe that the optimization objective is a concave
function. First, &E834> is concave as video quality with regard to
the bitrate is concave [56]. Second, &�## is also concave because
it monotonically increases with respect to increase in the training
set, ?C , yet the marginal improvement diminishes [70]. By the de�-
nition of concavity, any linear combination of concave functions is
concave.

The concavity of our objective function allows us to apply gradi-
ent ascent to �nd the global optimum [63], where the update rule
is represented as:

?C‚1 = U � fW � 3&�##
3?C

‚ 3&E834>
3?C

g ‚ ?C (2)
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where U is the step size. At the end of each time step, LiveNAS
client takes the new patch bandwidth allocation, ?C‚1, and uses
the bandwidth to transmit high-quality training patches. The rest,
�C‚1 � ?C‚1, is used for streaming live video, where �C‚1 is given
by the underlying transport layer. As it is di�cult to derive an
analytical closed-form equation of the quality and its derivative, we
use a numerical approach to compute the gradient using values from
live measurements. Figure 4 illustrates the process of computing
the two gradients. We explain the details below.
Estimating gradient for DNN-enhancement. To obtain the de-
rivative of &�## „

˝C
:=0 ?: ”, we use two recent DNN quality im-

provement, &�## „
˝C�2
:=0 ?: ” and &�## „

˝C�1
:=0 ?: ” and compute

the slope between the two. Unfortunately, the ingest client cannot
directly compute the DNN quality improvement, but the informa-
tion is available at the media server. Our media server provides
this information through periodic feedback (§6.1). It computes the
quality improvement due to super-resolution at time C � 2 and C � 1
using the most recent ground-truth label. For this, the media server
keeps the two most recent DNNs. We set the time interval between
the two to 5 seconds by making each training epoch to be 5-second
long. We explore how LiveNAS is sensitive to the length of training
epoch (i.e., training window) in our evaluation (§8.4). Any video
quality metric can be used, but our implementation uses PSNR
because it is less expensive to compute than structural similarity
index.
Estimating gradient for video quality. To obtain the derivative
term of&E834> , we need two video quality points,&E834> „EC�1” and
&E834> „EC ” to calculate the linear slope between the two. However,
video quality exhibit non-trivial variations across video frames
(Figure 2c). Thus, relying on taking quality measurements for a
few frames can be misleading. To obtain robust measurements, one
needs to take the average quality across multiple group of pictures
(GoP).

However, this places a signi�cant burden on clients because it
requires them to perform encoding at two di�erent bitrates and
video encoding is often expensive and power-hungry especially
on a mobile device [37, 45]. To estimate the quality di�erence, we
use two strategies. First, we gather measurements of average PSNR
values for di�erent encoded bitrates at the client. However, this
can be subject to large variation when we do not have enough
measurements. Thus, as a second strategy, we rely on the obser-
vation that the normalized bitrate-to-quality curve is very similar
across similar types of content. Figure 6 shows the video quality
normalized to the highest PSNR while varying the encoding rate
by video categories of Twitch. It shows a striking similarity in the
normalized bitrate-quality curves for di�erent video streams of the

same category. Our media server provides this information as a
function that given a stream class, it outputs the normalized quality
value, #&C~?4 „EC ” for bitrate EC . LiveNAS client initially estimates
&E834> „EC ” by scaling the relative di�erence in the normalized qual-
ity at EC�1 and EC to the observed video quality of the previous
epoch &E834> „EC�1”. Over time, the client adjusts it to the current
video using exponentially weighted averaging. This provides a ro-
bust estimate with reasonable accuracy while avoiding the cost of
extra encoding.
Update frequency and step size. The patch bitrate frequency
must be long enough to observe the e�ect of online training. But
short enough to respond to changes in network conditions and
scene changes that a�ect video quality. Thus, we set the update
frequency on the same order as our online training epoch. We use
a 5-second training epoch and 1-second update frequency, which
are empirically determined.

Finally, we set the step size as U =100 kbps in Equation 2, and the
initial patch rate as 100 kbps. This re�ects the minimal amount of
training data required to show online training gain for the �rst few
epochs. If the available bandwidth, �C , falls below the minimum
encoding bitrate enforced by WebRTC (which is 200 kbps), we do
not transmit any training patches and the system falls back to
vanilla WebRTC.
Validation case study. Using a real network trace from a 3G net-
work [62] and a video stream from YouTube, we perform a case
study to demonstrate how the algorithm works in practice. Figure 5
(top) shows the available bandwidth by WebRTC and LiveNAS’
allocation between the patch and live video bandwidth. The patch
bandwidth is updated every second from the gradient, shown in
Figure 5 (bottom). On average, LiveNAS allocated 8.9% of available
bandwidth for patch bitrate. For comparison, we also show an of-
�ine optimal patch bandwidth allocation that we obtained by doing
an exhaustive search over a time window of 5 seconds in 25 Kbps
increments. We �nd that LiveNAS closely approximates the o�ine
optimal policy that maximizes the overall video quality.

5.2 Patch Selection
Problem and goal. LiveNAS client sends training patches of size
120x120 pixels to match the dimension of our patch-based super-
resolution DNN. Each patch is a small fraction of an entire frame.
For example, the area of a 1080p frame is 144 times that of a patch.
However, the bandwidth constraint from the quality-optimizing
scheduler typically allows only a few training patches to be trans-
mitted per training epoch. But the patch selection actually a�ects
the training gain because some patches provide higher training
gains than others. Thus, the goal of patch selection is to select
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Figure 7: Patch Selection Overview
training patches to make the online training gain appear as large
and quickly as possible given the patch bandwidth computed in
§5.1. Figure 7 illustrates the process of patch selection, which we
explain in more detail.
Patch selection. To achieve our goal, we establish two criteria
for patch selection. First, we prioritize the ones that give the most
bene�t. The training gain a patch may provide varies as the scene
complexity varies over patches. We would like to send patches that
provide larger gains without introducing a large bias. Second, in
contrast to local training, we avoid sampling redundant data. In
general, super-resolution trainer samples a �xed-size patch from a
random location given a frame [42, 52, 55, 64, 75]. However, using
the same method will result in selecting and transmitting overlap-
ping regions, which we want to avoid.

LiveNAS uses a light-weight sampling method that satis�es the
criteria as illustrated in Figure 7. First, we obtain the most recent
raw frame and its decoded version to calculate the frame’s encoded
quality (e.g., in PSNR). Next, our client randomly samples a patch
in the frame from a grid of non-overlapping patches; e.g., a 1080p
frame is divided into 16x9 grid, where each cell is a 120x120 patch.
Finally, it includes the patch for transmission only if the patch’s
encoded quality is lower than the entire frame’s. Otherwise, it
discards the patch. The rationale is that including patches that are
more di�cult to encode as a training set will provide greater bene�t.
The process iterates until we select a small number of patches
(around 10) for transmission. Our sampling method improves the
average PSNR by 0.1 to 0.3 dB over random sampling within �ve
minutes of online training.
Patch encoding and transmission. The sampled patch has to be
sent at high resolution, but the raw RGB patch is very large (43 KB).
Thus, we need to balance the quality and the size using compression.
Lossless PNG compression reduces the size by 50% on average.
LiveNAS makes a better trade-o� by using lossy compression. Our
implementation uses JPEG with a quality level of 95, where 100
provides the highest quality. This reduces a patch size to 1/10 on
average without causing signi�cant degradation in training quality
(i.e., less than 0.1 dB in PSNR).

When transmitting a patch, we include its timestamp and its
location within the corresponding frame. This enables the media
server to assign a larger weight to the latest patch for online training
and �nd the low resolution counterpart from the encoded video
stream, as we will describe in §6.2. Finally, LiveNAS transmits the
content of the patch transmission bu�er according to the allocated
patch bandwidth. When the patch transmission bu�er is empty, we
invoke the patch sampler which re�lls the bu�er.

6 LIVENAS MEDIA SERVER DESIGN
This section describes the design of our ingest server that performs
online learning and inference for super-resolution.

6.1 Content-Adaptive Online Learning
Problem and goal. Generally speaking, the online learning ap-
proach exhibits a trade-o� between GPU training cost and video
quality gain. But, the actual tradeo� depends on the content of live
video. Speci�cally, for a video with infrequent scene changes, due to
the large amount of redundancy across frames, the online training
gain shows diminishing return over time and eventually saturates.
In contrast, video with frequent scene changes consistently bene�t
from online learning because the content changes over time. The
online learning approach allows us to take advantage of this and
increase resource e�ciency (or reduce the GPU usage) by dynam-
ically adapting to the real-time super-resolution gain on recent
frames. Note, this is a unique bene�t of online learning because a
pre-trained model cannot adapt the GPU usage in training to future
streams.

To enhance resource e�ciency, we carefully monitor the real-
time super-resolution (SR) gain and detect gain saturation and scene
changes to adapt the GPU usage for training. When we observe the
saturation of SR gain, we suspend online training to save the re-
source. Online training resumes, when the current model no longer
delivers signi�cant quality improvement for recent frames, signal-
ing the need for training. Algorithm 1 in Appendix A summarizes
our design that results in 65% savings in the GPU used for training.
Measuring quality. Measuring the quality of a video requires a
reference. The reference is readily available at the ingest client, but
at the media server, we do not have the full reference. Instead, we
use the high-quality training patches as a reference at the media
server. This allows us to compute the quality of a patch from a video
stream that corresponds to the high-quality training patch. Next,
we show how video quality measurements at the media server are
used to detect training gain saturation and scene changes.
Detecting gain saturation. At the end of a training epoch, the
trainer estimates the quality gain due to online training by com-
puting the quality di�erence after applying the most two recent
DNNs,�##C�1 and�##C (Algorithm 1, line 6) using a recent high-
quality patch. If the quality di�erence is smaller than C�A4B�B0C , the
trainer increments the ?0C84=24 value (line 8). If the ?0C84=24 value
exceeds a threshold, 2>D=CB0C , LiveNAS deems saturation has oc-
curred, resets the ?0C84=24 value, and suspends the training. It then
signals the ingest client which in turn sets the patch bitrate to a
minimum value, ?<8= . In our evaluation, we use ?<8= = 25 kbps,
sending a patch approximately every two seconds.
Adapting to scene changes. LiveNAS performs quality validation
of super-resolution when a recent high-quality patch arrives during
the period of suspended training. The media server computes the
quality di�erence between the latest online-trained DNN, �##C ,
and the initial DNN, �##C=0 (line 14), for which we use a DNN
trained using a standard benchmark dataset, such as NTIRE 2017
dataset [36]. �##C=0 re�ects the state before any online training.
If the di�erence between the two is smaller than C�A4B�>=;8=4 , it
means the current model no longer re�ects the recent content.
The trainer then increments the ?0C84=24 value (line 17). If the
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Component Lines of Code (LoC) Changed
LiveNAS Client 1489 lines of Python - (1489)
LiveNAS Server 1633 lines of Python - (1633)
WebRTC library 524k lines of C++ 0.21% (1102)

Table 1: LiveNAS implementation (Lines of Code)

?0C84=24 value exceeds a threshold, 2>D=C>=;8=4 , LiveNAS deems
scene changes has occurred, noti�es the ingest client, and resumes
online training. When the ingest client is noti�ed, it sets the patch
bitrate to initial value (§5.1), and the online training resumes with
recent patches. This re-bootstraps the feedback process between
online training and quality-optimizing scheduler as explained in
§5.1.
Persistent online learning. So far, we assumed online training
starts from a generic super-resolution DNN trained using a standard
benchmark dataset. However, operators can choose to keep and
reuse the result of online learning for future streams for popular
streamers. This reuses learned results from previous sessions, simi-
lar to pre-training, but delivers further quality gain while keeping
the two main bene�ts of online learning: 1) it still bene�ts from
resource-e�cient content-adaptive training; and 2) guarantees sig-
ni�cant quality gains even when dramatic scene changes occur. We
explore this option in our evaluation (§8).

6.2 Super-resolution Processor
Low latency and 4K support. The super-resolution DNN [72] we
use delivers real-time super-resolution up to 1080p resolution and
is done frame-by-frame in a serial manner. LiveNAS further enables
real-time 4K super-resolution using multiple GPUs. When multi-
GPU inference is enabled, LiveNAS splits up a frame into multiple
pieces in equal size and performs super-resolution for each piece
on di�erent GPUs, enabling intra-frame parallelism. After super-
resolution, the CPU gathers results from each GPU to put together
the pieces. This reduces latency and enables 4K super-resolution.

For example, we use three GPUs for super-resolution from 720p
(1080p) to 4K to enable real-time processing in our evaluation. Each
frame is split up into three pieces of size 1280x240 (1920x360 for
1080p), which are then individually super-resoluted by a factor
of three (two for 1080p) and stitched back to produce 3840x2160,
which is 4K. This takes 23 msec for 720p and 29 msec for 1080p
for each frame, which translates to 43 and 34 frames per second
respectively.
Online learning with live data. In contrast to the o�ine train-
ing, our training data get constantly updated. This leads to bias in
training; the earlier the data is added to the dataset, the more it
gets exposed to training. This is unfavorable, as the latest received
patches often better re�ect the current status of the live video. To
mitigate this unbalance, our online trainer gives a larger weight to
recent  patches when composing a mini-batch for training. For
our evaluation, we use  = 150 and give four times the weight to
them than remaining older patches. This results in a fairly modest
improvement of 0.07-0.28 dB in PSNR.
Support for multi-GPU training. LiveNAS supports multi-GPU
training to speed up online learning and thus further improves the
resulting video quality. For multi-GPU training, we partition the
data across multiple GPUs such that patches are grouped by their

arrival sequence. Each GPU then computes the gradient using the
same loss function. However, when aggregating multiple gradients
to synchronize the models, we give a larger weight to the gradient
computed with more recent patches. Our multi-GPU learning gives
an additional improvement of 0.77 dB to 1.1 dB in PSNR when using
three GPUs on top of the improvement from a single GPU (see §8).

7 IMPLEMENTATION
LiveNAS is implemented on top of the state-of-the-art open-sourced
ingest framework, WebRTC [26]. LiveNAS consists of �4K lines of
new or modi�ed code. Table 1 shows the lines of code (LoC) for
each component.
WebRTC integration. To integrate LiveNAS with WebRTC, we
add new APIs to libWebRTC [9]. We implement LiveNAS server and
client in python to utilize Pytorch framework and image processing
modules. Since libWebRTC is implemented in C++, we use a python
C++ wrapper to integrate LiveNAS and WebRTC. We add custom
APIs by modifying call.cc in libWebRTC to obtain estimated
network bandwidth, timestamp for each frame, raw decoded frames,
and encoded frames. More speci�cally, we add an observer [48]
inside decoder and encoder callback function, which returns the
timestamp of each frame, decoded frame, and encoded frame from
VP8 encoder. Finally, to retrieve the estimated network bandwidth
from WebRTC [38], we extend the callback triggered upon network
bandwidth change.
Training and Inference. We implement the online training pro-
cess and inference process as a separate process in Pytorch. We use
the “ultra-high” model from NAS [72] for super-resolution. The
output of super-resolution is 1080p or 4K, and input can be either
270p, 360p, 540p, 720p or 1080p. When the training patches arrive
at LiveNAS server, they are fed into the online training process
along with the decoded frames from the video retrieved from lib-
WebRTC. The online trainer utilizes the ADAM optimizer [53] to
optimize DNN parameters. The number of iteration in one epoch,
minibatch size, output patch size, and learning rate are set to 50,
64, 120, and 10�4, respectively. The training uses single-precision
(32-bit), but the inference is done with half-precision (16-bit) for
speed. At the end of every training epoch, the inference process is
synchronized. The �nal output is passed to multi-bitrate encoders
at the distribution side.
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Figure 8: CDF of FCC traces (BW< 10 Mbps) and our 25
samples with ingest/target resolutions.

8 EVALUATION
We evaluate LiveNAS to answer the following questions:
� Does LiveNAS e�ectively enhance the video quality and enable

4K streaming under a constrained environment? (§8.1)
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Figure 9: LiveNAS end-to-end quality improvement and GPU usage time of Twitch top 5 video contents.
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Figure 10: LiveNAS end-to-end quality improvement and GPU usage time of YouTube 4K video contents.

(PC: Podcast, SP: Sports, LE: Live Event, FC: Food/Cooking)

� How e�ective is content-adaptive online learning? (§8.2)
� What is the impact of the ingest improvement of LiveNAS on the

distribution side? (§8.3)
� Why online learning is e�ective and how sensitive is LiveNAS

to the training window? (§8.4)

Evaluation Setup. We use two Geforce RTX 2080 Ti GPUs at the
ingest server, one for inference and the other for training, unless
otherwise noted. We use 25 real-world network traces from 2019
FCC U.S. broadband uplink measurements [8]. The traces were sam-
pled according to the bandwidth distribution of the entire dataset,
excluding the top 38% whose average uplink bandwidth exceeded
10 Mbps to model a bandwidth-constrained environment. When
streaming, we choose the original ingest resolution according to
the average bandwidth of each trace, following the YouTube Live
settings [30], as shown in Figure 8. When the original resolution
is 360p or 540p (720p or 1080p) LiveNAS upscales it to 1080p (4K).
We use Mahimahi’s network emulation [58] to apply the network
trace to LiveNAS and WebRTC streams.

We use streams from Twitch and YouTube. For Twitch, from the
top �ve categories [16], we choose the most recent stream from the
top streamer of each category who makes their history publicly
available [20–24].1 Thus, earlier streaming history was available,
but the original quality was 1080p, and 4K was not available. To
obtain 4K videos, we search YouTube for four popular types of live
video (Podcast, Sports, Live event, Food/cooking) [32–35] and pick
a 4K video with high quality (bitrate >16.8 Mbps) whose length
is close to the average Twitch stream. However, for the YouTube
videos, prior streaming sessions were not available. We cut the
length to the average live stream of Twitch (95 mins [51]) if it is

1Streams are aired between Dec. 7, 2019 and Feb 7, 2020 depending on when experi-
ments were conducted.

longer. With 9 videos streamed across 25 traces, the total stream-
ing time amounts to 366 hours. We use WebRTC’s default codec,
VP8 [25], unless otherwise noted.
Metrics. We use a widely used peak-signal-to-noise ratio (PSNR)
[49] and structural similarity index (SSIM) [69] metrics for video
quality and also measure latency.

8.1 Video Quality Improvement
To demonstrate LiveNAS delivers signi�cant quality improvement,
we compare LiveNAS with three alternative designs:
� WebRTC does not utilize DNNs but uses bilinear interpolation

to scale up to target resolution.
� Generic super-resolution uses a super-resolution DNN trained

on DIV2K benchmark dataset [36].
� Super-resolution with pre-trained model uses a prior stream,

if available, from the same streamer to pre-train the model. For
Twitch streams, we hand-pick the best prior stream that closely
resembles the current stream within �ve days prior to its air
time. For a fair comparison, we use the same amount of GPU for
training as LiveNAS.
Figure 9 (a) and (b) show the quality improvement over vanilla

WebRTC in PSNR for each scheme by their original ingest resolution
for Twitch streams. Figure 10 (a) and (b) show the same for YouTube
video. We make LiveNAS and WebRTC video samples available at
http://ina.kaist.ac.kr/~livenas/. (Figure 25 in Appendix B shows the
quality improvement in SSIM.) The error bars represent the standard
deviation of average video quality. Figures 9 (c) and 10 (c) present
the absolute quality of a video for each network trace; Figures 26-
29 in Appendix show the absolute quality and snippets of video
frames for other streams. LiveNAS signi�cantly outperforms vanilla
WebRTC and generic super-resolution by at least 0.81 dB up to
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3.04 dB in PSNR. Generic super-resolution provides a much smaller
improvement of 0.11 dB to 1.93 dB. In SSIM, the quality sometimes
even is worse than vanilla WebRTC (Figure 25 in Appendix).

Compared to pre-training, online training delivers robust quality
because the improvement does not depend on the training set. A
pre-trained model can only be applied when similar content can
be easily identi�ed. LiveNAS outperforms the pre-trained model
by 0.6 to 1.14 dB in PSNR, except for Fortnite whose quality was
nearly the same as pre-trained. However, this result only appears
when the best train data is carefully selected. As shown in §3, using
streams from the previous day results in much poorer quality than
LiveNAS (Figure 2c). This suggests, while pre-training might be
useful in some context, online learning provides greater bene�t
without having to rely on choosing a good training set.

Note Fortnite’s quality improvement is smaller than other streams
for all schemes. This is because the nature of the game (�rst person
shooter) involves highly dynamic movement, which is also re�ected
in the original encoded stream quality being the lowest, as shown
in Figure 15.
Achieving higher quality. Persistent online learning and multi-
GPU learning can further enhance the ingest quality. First, per-
sistent online learning stores the DNN after a stream has ended
and reuses it as a starting point for the next streaming event of
the same streamer. This combines the bene�t of pre-training and
online learning in that it uses pre-trained knowledge while the
enhancement of online learning is applied to the current stream.
Figure 11 shows persistent online learning adds 0.37-0.7 dB gain
over online learning for the top three Twitch streams on our traces.
We project this is because it gets a larger set of training data from
both earlier and current streams, enough to produce additional
bene�t, from Figure 2d.

Second, multi-GPU training gives an orthogonal opportunity for
further improvement. Figure 12 shows using more GPUs improve
the quality, but marginal quality gain shows a diminishing return.
When multiple GPU is used, LiveNAS quality optimizer transmits
more training data because the online learning gain becomes greater
as learning is accelerated; a training epoch �nishes faster, and the
gain accumulated over multiple, shortened epochs becomes greater.
Implications on streamer bandwidth. LiveNAS provides much
higher quality compared to WebRTC at the same bandwidth. We
quantify how much more bandwidth is required for WebRTC to
deliver the same quality as LiveNAS. For this, we increase the band-
width of network traces by a factor greater than 1 and repeat the
experiment. Figure 13 shows the bandwidth usage of LiveNAS nor-
malized to WebRTC’s bandwidth usage for each original ingest

resolution when delivering the same quality. LiveNAS achieves the
same quality as WebRTC using only 45.9% bandwidth on average.
Latency and ingest QoE implications. Table 2 in Appendix shows
the inference delay at each resolution. LiveNAS adds 10-29 ms of
latency depending on ingest resolution to the end-to-end average
delay of 209.6 ms of WebRTC in our experiment with 10 ms network
latency emulated by Mahimahi. The largest latency comes from
processing and queuing delay inside the WebRTC ingest client.

According to the QoE model derived from a user study [44] using
a video call, a latency increase of 100 msec is equivalent to 1.0 dB
degradation in visual quality in SSIM. Note, LiveNAS produces a
quality gain of 1.21 dB in SSIM on average with our traces, which
results in a net gain in the ingest QoE. This is looking at the ingest
side in isolation. In §8.3, we show the ingest enhancement produces
a dramatic improvement on QoE for end viewers at the distribution
side.
LiveNAS is codec-agnostic. We repeat the experiment of Figure 9
(a) with VP9 instead of VP8 with the top three Twitch videos. The re-
sult in Figure 14 shows the quality improvement is almost the same.
This is because content-aware super-resolution [72] takes advan-
tage of long-term redundancy that appears across multiple group
of pictures (GoPs), while video codecs only concern redundancy
within a GoP.

8.2 Resource E�ciency of LiveNAS
This section evaluates the resource e�ciency of LiveNAS in various
aspects. In particular, we compare LiveNAS with three baseline
training methods:
� One-time Customization trains DNN upfront on the �rst few

seconds of the stream. We use the �rst 60 seconds of the stream
unless otherwise noted.
� Online learning with early-stop trains DNN upfront once for

the time dynamically chosen by our gain saturation detection.
After that, it never resumes training throughout the stream even
when a scene change is detected.
� Continuous online learning trains DNN continuously through-

out the stream without any suspension. The training time is
identical to the streaming time.

E�ciency of online learning. Figures 9 (d) and 10 (d) show the
GPU usage for online training compared to stream length. On aver-
age, LiveNAS performs online learning for only 35% of streaming
time. The savings from content-adaptive training actually re�ect
the learning di�culty which depends on multiple factors: First, it
depends on how dynamic the video is. Second, observe when the
stream lasts longer, the savings generally become more signi�cant.
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Figure 19: Content-adaptive vs One-time Customization.
For YouTube videos of di�erent lengths, we see this trend. Second,
the larger the scaling factor in super-resolution, it is more di�cult
to learn. For example, in 720p to 4K super-resolution, the scaling
factor is x3, and 1080p to 4K is x2. Thus, the former requires more
GPU usage, as shown in Figure 10 (d).

Figure 15 compares the GPU usage time in training and the re-
sulting video quality for each video and scheme. LiveNAS delivers
almost the same quality while using 25% of GPU resources com-
pared to continuous training. Early-stop and one-time customiza-
tion, however, come at a signi�cant decrease in quality because it
does not keep up with scene changes.

Finally, despite the complex relationship that determines the
learning di�culty and video quality, we con�rm our quality-optimizing
scheduler outperforms any scheme that allocates �xed bandwidth
for transmitting high-quality training labels in terms of video qual-
ity (not shown in �gures).
Cost. We quantify the computation cost assuming the ingest band-
width follows the distribution used in §8.1, the ingest server is
located at a public cloud, the cost is amortized over a large number
of live streams, and overhead of model update across distributed
GPU is disregardable. One GPU is used for training and multiple
GPUs are used to ensure real-time inference for 4K (as shown in
Appendix B Table 2). The average cost is $4.69 per hour per stream
using a 16 vCPU machine with four Nvidia Tesla V100 GPUs on
Google Cloud.
Energy-e�ciency of LiveNAS client. LiveNAS consumes less
energy due to the fact that clients can perform encoding at lower
resolution thanks to the super-resolution at the ingest server. This
can be crucial for mobile clients that operate on battery (e.g., for
outdoor streaming).

We compare the power consumption of a client against WebRTC
using NVIDIA’s Jetson TX2, an embedded system whose main
chip has modules for video encoding/decoding for major codecs,

including VP8 and VP9. We used TX2’s internal power monitor and
measure the power consumption of the TX2 chip and the board
with its peripherals. We compare 4K stream on WebRTC at 9.5 Mbps
versus LiveNAS that provide the same quality with 1080p live ingest
at 7 Mbps. Figure 17 shows the power consumption. LiveNAS saves
16% and 23% power for VP9 and VP8 encoding respectively, while
providing the same quality. This is primarily due to 4K encoding
consuming 36.3% and 54.7% more power than 1080p encoding for
VP9 and VP8 respectively.
Case study. We perform a case study to show how content-adaptive
training works with an actual live stream from one of the top stream-
ers on Twitch.tv [18]. Figure 16 shows the timeline of the stream,
which shows multiple transitions within the �rst 20 minutes. As
shown, it is not uncommon for streamers to change content during
a live stream.

When the stream goes live, the trainer performs online training
within 12 seconds, until it detects gain saturation (at C = 203 sec).
However, when new content appears (at C = 400), the trainer detects
this and resumes online training. This is repeated multiple times
throughout. Content-adaptive learning reduces the GPU usage by
54% compared to continuous training but still shows comparable
quality to that of continuous training. In contrast, the early-stop
scheme’s super-resolution gain diminishes over scene transitions
as shown in Figure 18. The result shows LiveNAS’ online learning
e�ectively adapts to scene transitions to produce high-quality live
stream, while delivering resource e�ciency.

To better understand where the e�ectiveness of content-adaptive
learning stems from, we measure the quality gain over streaming
time in this scenario. As shown in Figure 19a, the quality gain from
one-time customization diminishes over time (>= 62sec) especially
when video content changes (e.g., Just Chatting from Pokemon).
In contrast, content-adaptive learning consistently achieves the
quality gain comparable to that of continuous training. Overall, as
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Figure 20: Impact on viewer QoE at distribution-side.

shown in Figure 19b, it improves the quality by 0.43 dB on average
over all frames and median quality by 0.47 dB compared to the
one-time customization baselines.

8.3 QoE Improvement on Distribution Side
LiveNAS improves the quality of experience (QoE) of live stream
viewers because it enhances the ingest stream quality. To quantify
this, we measure the QoE of viewers at the distribution side by cre-
ating a video distribution setting that provides adaptive streaming
to end viewers. We use “Just Chatting” video [22] from Twitch
and “Sports” [35] from YouTube for adaptive streaming on two
traces: 1) 100 downlink traces randomly sampled from 2019 FCC
U.S. broadband traces [8] (avg. bandwidth=72 Mbps); and 2) 3G and
broadband traces used in Pensieve (average is 1.48 Mbps). We use
Pensieve’s adaptive streaming setting and simulator for measur-
ing the linear QoE [57]. We use Pensieve and robustMPC [73] as
the adaptive bitrate (ABR) algorithm. The ingest resolution for the
Twitch stream is 540p, and 1080p for the YouTube video. LiveNAS
then upscales the ingest stream into 1080p and 4K for Twitch and
YouTube videos respectively. For YouTube, we add 2K and 4K chunk
options.

The widely-used QoE metric [57, 72, 73] for adaptive streaming
takes in the bitrate of each chunk. To quantify the visual enhance-
ment of LiveNAS in bitrate, we created an inverse mapping from
video quality to the corresponding bitrate, similar to how it is done
in NAS [72], using WebRTC’s encoding as the baseline. This al-
lows us to obtain the “e�ective bitrate” of video chunks sourced
from LiveNAS and re�ect the e�ect of super-resolution on the QoE
metric.

Figure 20 shows LiveNAS ingest delivers 27%-69% improvement
in average QoE for the Twitch stream and 12%-66% improvement
for the YouTube video over WebRTC ingest. The improvement
comes from two reasons: 1) LiveNAS provides higher resolution
chunks, bene�ting viewers who have ample bandwidth. 2) Each
encoded chunk is of better quality because the ingest video quality
improves with LiveNAS. The improvement for the FCC broadband
traces (Figure 20a) is much larger than that for Pensieve traces
(Figure 20b) because the former has higher bandwidth to receive
higher resolution chunks with better quality (Figure 10c).

In many cases, the improvement LiveNAS gives is much larger
than what the advanced ABR algorithm produces over its prede-
cessor. For example, Pensieve’s improvement over robustMPC is at
most 13% for Twitch video. But LiveNAS gives 27% improvement
over WebRTC ingest on the same traces. This implies that in live
streaming, ingest-side improvement is crucial and it is at least as
important as ABR algorithms for enhancing the QoE of end viewers.

8.4 LiveNAS Deep Dive
Why online learning is e�ective in live video streaming?
There are two key observations that make online learning feasible
for live video streaming. First, as illustrated in Figure 22, while
training a super-resolution DNN, the majority of quality gain is
achieved in the �rst few epochs because the DNN delivers steep
diminishing gain over training time. Thus, even though the DNN
is trained only during a live streaming session, it still provides
large quality improvement (e.g., 1.83-2 dB). Next, a small portion
of patches (2.5% per frame) can e�ectively bene�t the entire video
streaming. This is because subsequent video frames bear large tem-
poral redundancy, and therefore, attaining better super-resolution
for even a part of a frame has a lasting bene�t for multiple subse-
quent frames as shown in Figure 2d and Figure 24. Moreover, due
to the compression artifacts and patterns in the high-frequency
regions speci�c to the video, the quality of other areas, which are
not included in the training patches, also improves (refer Figure 21).
How sensitive is LiveNAS to the training window? To select
patch bitrate at the beginning of each training epoch, LiveNAS
’s quality-optimizing scheduler (§5.1) uses two recent DNNs to
predict the quality gain of a DNN trained for the next training
epoch. As demonstrated in Figure 23a, the length of each training
epoch (i.e., training window) has a large impact on the prediction
accuracy. The result shows that the prediction error is minimal at 5
seconds, which is our default setting, while increasing epoch length
to 20-80 seconds produces 31-93% large error. This is because as the
time distance between two DNNs becomes closer, the DNN quality
improvement comes closer to resembling the actual value at the
current time period. However, further shortening epoch results in
37% higher error as training with shorter epoch is not long enough
to observe the e�ect of online training. Finally, the more accurate
prediction leads to larger overall quality gain as demonstrated in
Figure 23b. On average, 5-second epoch achieves 0.3 dB higher
quality compared to the other settings; here, both the accurate
prediction and the frequent update of DNN increase the quality.

9 RELATED WORK ON LIVE STREAMING
Low-latency streaming protocols. Among many industry-led
designs [27, 28], WebRTC [26] is a free open source framework
that enables near-simultaneous communications by direct peer-
to-peer communications. Commercial media servers provide live
broadcasting by combining WebRTC ingest with delivery via HTTP
adaptive streaming [1, 29]. The new standards [3, 4] break video
into smaller chunks to minimize the latency due to chunk-based
encoding and publishing. LiveNAS focuses on improving the video
quality on top of existing low-latency protocols for live video.
Integrating codec and transport. Salsify [44] integrates video
codec and network protocol to match and respond quickly to the
available bandwidth in real-time video streaming. As a result, Salsify
improves user QoE in terms of delay and video quality. However,
its optimization strategy requires a “purely functional video codec”
that allows applications to explore alternative encodings of di�er-
ent quality levels [44, 45]. Unlike Salsify, LiveNAS is agnostic to
codec, but focuses on enhancing video quality by applying neural
computation. Alternatively, LiveNAS can also employ functional
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Figure 21: Small fraction of data is su�cient for online training. (Twitch content [22])
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codecs, which will allow us to determine the quality of encoding at
di�erent bitrates more accurately in §5.1.
Time-shifted viewing. Vantage [61] observes live streams are
watched by viewers at di�erent delays. Considering the time-shifted
viewers, it improves the overall quality by selectively re-transmitting
the previously delivered frames with better quality. The objective
is to optimize the overall user QoE by balancing between QoE im-
provement for delayed viewers and potential QoE loss of real-time
viewers. LiveNAS on the other hand enhances the quality of the
original live stream directly, bene�ting all viewers. We believe the
approaches of Vantage and LiveNAS are orthogonal and further
improvements can be made by combining the two.
Use of pre-trained DNNs. Inspired by the fact that recurring
video conferencing sessions bear signi�cant similarity, Dejavu [50]
presents preliminary work that explores the possibility of applying
quality-enhancing DNNs using a pre-trained model from prior
video conferencing sessions. Yet, this limits its content to video
conferencing with high similarities and cannot fully cover ever-
growing user generated live video [51, 60]. LiveNAS demonstrates
online training is not only feasible but bene�ts a wide range of live
streams.
Use of super-resolution on ingest. Edge-to-cloud video analyt-
ics frameworks require high-quality video input at the cloud servers
for high accuracy, but the bandwidth between edge and cloud
can be scarce. To address the challenge, CloudSeg [68] presents
preliminary work that maximizes analytics accuracy by applying
super-resolution on ingest video streams at the cloud server. Both
LiveNAS and CloudSeg use super-resolution on ingest stream, how-
ever, LiveNAS di�ers from CloudSeg in two aspects. First, LiveNAS

maximizes the QoE of live stream viewers while CloudSeg max-
imizes the accuracy of analytics tasks. Second, to maximize the
quality gain, LiveNAS sends training data along with ingest stream
and uses DNNs that is freshly updated online while CloudSeg uses
DNNs trained o�ine. We believe our online learning approach
can be also applied to the video analytics frameworks to improve
performance.

10 CONCLUSION
We present LiveNAS, a new live video ingest framework that utilizes
super-resolution deep neural networks to enhance the live video
quality independent of the ingest-side network bandwidth. LiveNAS
applies online training, a new approach that addresses the core
challenge of utilizing super-resolution in the context of live video
delivery. LiveNAS introduces novel design components, including
quality-optimizing scheduler and content-adaptive trainer, to fully
realize the bene�t of online training. LiveNAS achieves an average
of 1.96 dB overall video quality improvement in PSNR over WebRTC
across various real-world network traces and produces signi�cant
(12%-69%) QoE improvement for live stream viewers.
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Appendices are supporting material that has not been peer-reviewed.

APPENDIX A ALGORITHM OF LIVENAS

Algorithm 1: Content-Adaptive Online Training
1 set initial STATE as Training;
2 repeat
3 switch STATE
4 case Training
5 for each training epoch
6 Compute di� of &�##C

and &�##C�1 ;
7 if di� < C�A4B�B0C
8 ?0C84=24 += 1;
9 if patience > 2>D=CB0C

10 Suspend online training;
11 STATE = Suspended;
12 ?0C84=24 = 0;

13 else
14 ?0C84=24 = 0;

15 case Suspended
16 for each validation period
17 Compute di� of &�##C

and &�##C=0 ;
18 if di� < C�A4B�>=;8=4
19 ?0C84=24 += 1;
20 if patience > 2>D=C>=;8=4
21 resume online training;
22 STATE = Training;
23 ?0C84=24 = 0;

24 else
25 ?0C84=24 = 0;

26 until stream ends;

APPENDIX B ADDITIONAL RESULTS
Quality improvement in SSIM. Figure 25 shows the quality im-
provement of LiveNAS in structrual similarity index (SSIM) [69]

Ingest Upscale Target fps Delay # of GPU
270p x4 1080p 46 21ms x1
360p x3 1080p 39 25ms x1
540p x2 1080p 41 24ms x1
720p x1(w/ bilinear) 1080p 99 10ms x1
720p x3 4K 43 23ms x3
1080p x2 4K 34 29ms x3

Table 2: LiveNAS super-resolution inference delay.

over vanilla WebRTC for top three category videos from Twitch and
four Youtube videos. LiveNAS outperforms the pretrained model
except for Fortnite. This is similar to the PSNR result in §8.1. How-
ever, the quality of generic super-resolution often even worse than
vanilla WebRTC. This shows generic super-resolution does not
cover the diversity that video content exhibits.
Quality improvement for all videos. Figures 26 and 27 show
the absolute quality of LiveNAS compared to WebRTC and generic
super-resolution in PSNR for top three Twitch and Youtube videos
respectively. LiveNAS delivers consistent bene�t over WebRTC and
generic super-resolution as summarized in §8.1.
Screenshot examples. Figures 28 and 29 respectively show snip-
pets of video frames from Twitch and Youtube video we used in
the evaluation. The snippets of vanilla WebRTC and LiveNAS high-
lights a clear improvement in visual quality that LiveNAS provides.
Super-resolution Inference Delay. Table 2 shows the delay in-
troduced by super-resolution. It includes the time to transmit a
frame to GPU, perform DNN inference, and copy the result back to
the CPU. When multiple GPU is used, we include the preprocessing
and postprocessing time as well. We show six di�erent ingest reso-
lutions with two target resolutions. Note LiveNAS can support any
ingest resolutions. For example, LiveNAS can also support 240p,
480p resolutions by performing bilinear upsampling followed by
super-resolution with scale factor of x4 and x2 to obtain 1080p
target resolution [72]. For simplicity however, we evaluated with
540p instead of 480p which enables super-resolution with integer
up-scale factor.
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(a) Example of transmitted patches selected by our patch selection
algorithm. On average, 6 patches are transmitted every 2 seconds

which translates to 103.2 Kbps. Our patch selection algorithm
preferentially selects such areas that have room for improvement.

(b) Patch-wise psnr improvement after online training. Yellow
patches indicate signi�cant PSNR improvement (over 85% percentile).

Notice the quality of every patch improves, particularly the ones
that show similar patterns with the patches that LiveNAS sends.

Figure 24: Selected patches and resulting patch-wise PSNR improvement. (Twitch content [22])

(a) Average SSIM gain of (b-h). (b) CDF of Just Chatting (c) CDF of League of Legends (d) CDF of Fortnite

(e) CDF of Podcast (f) CDF of Sports (g) CDF of Live Event (h) CDF of Food/Cooking
Figure 25: Cumulative distribution of video frames and video quality improvement in SSIM.

(a) Content: Just Chatting (b) Content: World of Warcraft (c) Content: Fortnite

Figure 26: LiveNAS end-to-end quality improvement of Twitch video contents for each trace (Target: 1080p).
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(a) Content: Food/Cooking (b) Content: Podcast (c) Content: Live Event

Figure 27: LiveNAS end-to-end quality improvement of Youtube video contents for each trace (Target: 4K).
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(a) League of Legends (WebRTC) / PSNR: 25.5 dB, SSIM: 0.85 (b) League of Legends (LiveNAS) / PSNR: 30 dB, SSIM: 0.9

(c) Just Chatting (WebRTC) / PSNR: 27.1 dB, SSIM: 0.9 (d) Just Chatting (LiveNAS) / PSNR: 33.2 dB, SSIM: 0.96

(e) Just Chatting (WebRTC) / PSNR: 27.1 dB, SSIM: 0.9 (f) Just Chatting (LiveNAS) / PSNR: 33.2 dB, SSIM: 0.96

(g) Fortnite (WebRTC) / PSNR: 26.3 dB, SSIM: 0.87 (h) Fortnite (LiveNAS) / PSNR: 28.7 dB, SSIM: 0.91

Figure 28: LiveNAS live stream results: 360p to 1080p (Twitch contents [21–23])
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(a) Food/Cooking (WebRTC) / PSNR: 29.1 dB, SSIM: 0.88 (b) Food/Cooking (LiveNAS) / PSNR: 32.2 dB, SSIM: 0.92

(c) Live Event (WebRTC) / PSNR: 31.8 dB, SSIM: 0.89 (d) Live Event (LiveNAS) / PSNR: 34.2 dB, SSIM: 0.93

(e) Podcast (WebRTC) / PSNR: 34.8 dB, SSIM: 0.95 (f) Podcast (LiveNAS) / PSNR: 37.9 dB, SSIM: 0.97

(g) Sports (WebRTC) / PSNR: 34.2 dB, SSIM: 0.93 (h) Sports (LiveNAS) / PSNR: 36.6 dB, SSIM: 0.95

Figure 29: LiveNAS live stream results: 720p to 4K (Youtube 4K contents [32–35])
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